Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.123
1.
J Clin Invest ; 133(10)2023 05 15.
Article En | MEDLINE | ID: mdl-36995778

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by absence of the protein dystrophin, which acts as a structural link between the basal lamina and contractile machinery to stabilize muscle membranes in response to mechanical stress. In DMD, mechanical stress leads to exaggerated membrane injury and fiber breakdown, with fast fibers being the most susceptible to damage. A major contributor to this injury is muscle contraction, controlled by the motor protein myosin. However, how muscle contraction and fast muscle fiber damage contribute to the pathophysiology of DMD has not been well characterized. We explored the role of fast skeletal muscle contraction in DMD with a potentially novel, selective, orally active inhibitor of fast skeletal muscle myosin, EDG-5506. Surprisingly, even modest decreases of contraction (<15%) were sufficient to protect skeletal muscles in dystrophic mdx mice from stress injury. Longer-term treatment also decreased muscle fibrosis in key disease-implicated tissues. Importantly, therapeutic levels of myosin inhibition with EDG-5506 did not detrimentally affect strength or coordination. Finally, in dystrophic dogs, EDG-5506 reversibly reduced circulating muscle injury biomarkers and increased habitual activity. This unexpected biology may represent an important alternative treatment strategy for Duchenne and related myopathies.


Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Mice , Animals , Dogs , Muscular Dystrophy, Duchenne/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Dystrophin/genetics , Muscle Contraction/physiology , Disease Models, Animal , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism
2.
Sci Transl Med ; 15(677): eabo1815, 2023 01 04.
Article En | MEDLINE | ID: mdl-36599002

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the DMD gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (µDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 1013 vector genomes per kilogram (vg/kg), 1 × 1014 vg/kg, and 2 × 1014 vg/kg; n = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-µDys5, and followed for 90 days after dosing. All dogs received prednisone (1 milligram/kilogram) for a total of 5 weeks from day -7 through day 28. We observed dose-dependent increases in tissue vector genome copy numbers; µDys5 protein in multiple appendicular muscles, the diaphragm, and heart; limb and respiratory muscle functional improvement; and reduction of histopathologic lesions. As expected, given that a truncated dystrophin protein was generated, phenotypic test results and histopathologic lesions did not fully normalize. All administrations were well tolerated, and adverse events were not seen. These data suggest that systemically administered AAV-microdystrophin may be dosed safely and could provide therapeutic benefit for patients with DMD.


Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Animals , Dogs , Humans , Infant, Newborn , Mice , Dystrophin/genetics , Dystrophin/metabolism , Genetic Therapy , Heart , Muscle, Skeletal/metabolism , Muscles/metabolism , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy
3.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article En | MEDLINE | ID: mdl-36012334

Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.


Lacticaseibacillus casei , Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Administration, Oral , Animals , Antibodies/therapeutic use , Disease Models, Animal , Humans , Lacticaseibacillus casei/genetics , Mice , Mice, Inbred mdx , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/pathology
4.
JCI Insight ; 7(13)2022 07 08.
Article En | MEDLINE | ID: mdl-35639486

LAMA2 deficiency, resulting from a defective or absent laminin α2 subunit, is a common cause of congenital muscular dystrophy. It is characterized by muscle weakness from myofiber degeneration and neuropathy from Schwann cell amyelination. Previously it was shown that transgenic muscle-specific expression of αLNNd, a laminin γ1-binding linker protein that enables polymerization in defective laminins, selectively ameliorates the muscle abnormality in mouse disease models. Here, adeno-associated virus was used to deliver linker mini-genes to dystrophic dy2J/dy2J mice for expression of αLNNd in muscle, or αLNNdΔG2', a shortened linker, in muscle, nerve, and other tissues. Linker and laminin α2 levels were higher in αLNNdΔG2'-treated mice. Both αLNNd- and αLNNdΔG2'-treated mice exhibited increased forelimb grip strength. Further, αLNNdΔG2'-treated mice achieved hind limb and all-limb grip strength levels approaching those of WT mice as well as ablation of hind limb paresis and contractures. This was accompanied by restoration of sciatic nerve axonal envelopment and myelination. Improvement of muscle histology was evident in the muscle-specific αLNNd-expressing mice but more extensive in the αLNNdΔG2'-expressing mice. The results reveal that an αLN linker mini-gene, driven by a ubiquitous promoter, is superior to muscle-specific delivery because of its higher expression that extends to the peripheral nerve. These studies support a potentially novel approach of somatic gene therapy.


Muscular Dystrophies , Muscular Dystrophy, Animal , Animals , Laminin/genetics , Laminin/metabolism , Mice , Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Peripheral Nerves/metabolism
5.
PLoS One ; 17(4): e0254274, 2022.
Article En | MEDLINE | ID: mdl-35436319

PURPOSE: Greater muscle fragility is thought to cause the exhaustion of the muscle stem cells during successive degeneration/repair cycles, leading to muscle wasting and weakness in Duchenne muscular dystrophy. Chronic voluntary exercise can partially reduce the susceptibility to contraction induced-muscle damage, i.e., muscle fragility, as shown by a reduced immediate maximal force drop following lengthening contractions, in the dystrophic mdx mice. Here, we studied the effect of Prospero-related homeobox factor 1 gene (Prox1) transfer (overexpression) using an AAV on fragility in chronically exercised mdx mice, because Prox1 promotes slower type fibres in healthy mice and slower fibres are less fragile in mdx muscle. METHODS: Both tibialis anterior muscles of the same mdx mouse received the transfer of Prox1 and PBS and the mice performed voluntary running into a wheel during 1 month. We also performed Prox1 transfer in sedentary mdx mice. In situ maximal force production of the muscle in response to nerve stimulation was assessed before, during and after 10 lengthening contractions. Molecular muscle parameters were also evaluated. RESULTS: Interestingly, Prox1 transfer reduced the isometric force drop following lengthening contractions in exercised mdx mice (p < 0.05 to 0.01), but not in sedentary mdx mice. It also increased the muscle expression of Myh7 (p < 0.001), MHC-2x (p < 0.01) and Trpc1 (p < 0.01), whereas it reduced that one of Myh4 (p < 0.001) and MHC-2b (p < 0.01) in exercised mdx mice. Moreover, Prox1 transfer decreased the absolute maximal isometric force (p < 0.01), but not the specific maximal isometric force, before lengthening contraction in exercised (p < 0.01) and sedentary mdx mice. CONCLUSION: Our results indicate that Prox1 transfer increased the beneficial effect of chronic exercise on muscle fragility in mdx mice, but reduced absolute maximal force. Thus, the potential clinical benefit of the transfer of Prox1 into exercised dystrophic muscle can merit further investigation.


Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Animals , Genetic Therapy , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy
6.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article En | MEDLINE | ID: mdl-35216371

Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings, we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to treating dystrophic cardiomyopathy.


Cardiomyopathies/drug therapy , Heart/drug effects , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Protein Kinase C-theta/antagonists & inhibitors , Animals , Cardiomyopathies/metabolism , Dipeptides/pharmacology , Disease Models, Animal , Dystrophin/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Myocardium/metabolism , Phenotype
7.
NMR Biomed ; 35(3): e4659, 2022 03.
Article En | MEDLINE | ID: mdl-34841594

31 Phosphorus magnetic resonance spectroscopy (31 P-MRS) has been shown to detect altered energetic status (e.g. the ratio of inorganic phosphate to phosphocreatine: Pi/PCr), intracellular acid-base status, and free intracellular magnesium ([Mg2+ ]) in dystrophic muscle compared with unaffected muscle; however, the causes of these differences are not well understood. The purposes of this study were to examine 31 P-MRS indices of energetic status and sarcolemma integrity in young mdx mice compared with wild-type and to evaluate the effects of downhill running to induce muscle damage on 31 P-MRS indices in dystrophic muscle. In vivo 31 P-MRS spectra were acquired from the posterior hindlimb muscles in young (4-10 weeks of age) mdx (C57BL/10ScSn-DMDmdx) and wild-type (C57BL/10ScSnJ) mice using an 11.1-T MR system. The flux of phosphate from PCr to ATP was estimated by 31 P-MRS saturation transfer experiments. Relative concentrations of high-energy phosphates were measured, and intracellular pH and [Mg2+ ] were calculated. 1 H2 O-T2 was measured using single-voxel 1 H-MRS from the gastrocnemius and soleus using a 4.7-T MR system. Downhill treadmill running was performed in a subset of mice. Young mdx mice were characterized by elevated 1 H2 O-T2 (p < 0.01), Pi/PCr (p = 0.02), PCr to ATP flux (p = 0.04) and histological inflammatory markers (p < 0.05) and reduced (p < 0.01) [Mg2+ ] compared with wild-type. Furthermore, 24 h after downhill running, an increase (p = 0.02) in Pi/PCr was observed in mdx and wild-type mice compared with baseline, and a decrease (p < 0.001) in [Mg2+ ] and a lower (p = 0.048) intracellular [H+ ] in damaged muscle regions of mdx mice were observed, consistent with impaired sarcolemma integrity. Overall, our findings demonstrate that 31 P-MRS markers of energetic status and sarcolemma integrity are altered in young mdx compared with wild-type mice, and these indices are exacerbated following downhill running.


Energy Metabolism , Muscular Dystrophy, Animal/metabolism , Sarcolemma/metabolism , Adenosine Triphosphate/metabolism , Animals , Magnetic Resonance Spectroscopy/methods , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Phosphocreatine/metabolism , Phosphorus , Physical Conditioning, Animal
8.
J Neuromuscul Dis ; 8(s2): S325-S340, 2021.
Article En | MEDLINE | ID: mdl-34569971

BACKGROUND: AAV-based gene therapy is an attractive approach to treat Duchenne muscular dystrophy (DMD) patients. Although the long-term consequences of a gene therapy approach for DMD are unknown, there is evidence in both DMD patients and animal models that dystrophin replacement by gene therapy leads to an anti-dystrophin immune response that is likely to limit the long-term use of these therapeutic strategies. OBJECTIVE: Our objective is to test whether the anti-dystrophin immune response is affected by immunomodulatory drugs in mdx mice after rAAV gene therapy. METHODS: mdx mice were treated with rAAV microdystrophin alone or in combination with immunomodulatory drugs. Dystrophin expression in skeletal muscle was assessed by mass spectrometry. Immune responses were assessed by immunophenotyping, western blot for anti-dystrophin antibodies and flow cytometry assays for antigen-specific T-cell cytokine expression. The impact on muscle was measured by grip strength assessment, in vivo torque, optical imaging for inflammation and H&E staining of sections to assess muscle damage. RESULTS: We found that AAV-9-microdystrophin gene therapy induced expression of microdystrophin, anti-dystrophin antibodies, and T-cell cytokine responses. Immunomodulatory treatments, rituximab and VBP6 completely abrogated the anti-dystrophin antibody response. Prednisolone, CTLA4-Ig, and eplerenone showed variable efficacy in blocking the anti-dystrophin immune response. In contrast, none of the drugs completely abrogated the antigen specific IFN-γ response. AAV-microdystrophin treatment significantly reduced inflammation in both forelimbs and hindlimbs, and the addition of prednisolone and VBP6 further reduced muscle inflammation. Treatment with immunomodulatory drugs, except eplerenone, enhanced the beneficial effects of AAV-microdystrophin therapy in terms of force generation. CONCLUSIONS: Our data suggest that AAV-microdystrophin treatment results in anti-dystrophin antibody and T-cell responses, and immunomodulatory treatments have variable efficacy on these responses.


Dependovirus/metabolism , Dystrophin/immunology , Genetic Therapy/methods , Immunomodulating Agents/therapeutic use , Muscular Dystrophy, Duchenne/therapy , Animals , Gene Expression , Genetic Vectors , Immunity , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism
9.
Exp Cell Res ; 406(2): 112766, 2021 09 15.
Article En | MEDLINE | ID: mdl-34364881

Duchene muscular dystrophy leads to progressive muscle structural and functional decline due to chronic degenerative-regenerative cycles. Enhancing the regenerative capacity of dystrophic muscle provides potential therapeutic options. We previously demonstrated that the circadian clock repressor Rev-erbα inhibited myogenesis and Rev-erbα ablation enhanced muscle regeneration. Here we show that Rev-erbα deficiency in the dystrophin-deficient mdx mice promotes regenerative myogenic response to ameliorate muscle damage. Loss of Rev-erbα in mdx mice improved dystrophic pathology and muscle wasting. Rev-erbα-deficient dystrophic muscle exhibit augmented myogenic response, enhanced neo-myofiber formation and attenuated inflammatory response. In mdx myoblasts devoid of Rev-erbα, myogenic differentiation was augmented together with up-regulation of Wnt signaling and proliferative pathways, suggesting that loss of Rev-erbα inhibition of these processes contributed to the improvement in regenerative myogenesis. Collectively, our findings revealed that the loss of Rev-erbα function protects dystrophic muscle from injury by promoting myogenic repair, and inhibition of its activity may have therapeutic utilities for muscular dystrophy.


Cell Differentiation , Muscle, Skeletal/cytology , Muscular Dystrophy, Animal/prevention & control , Muscular Dystrophy, Duchenne/prevention & control , Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors , Regeneration , Animals , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/etiology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/etiology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Wnt Signaling Pathway
10.
J Neuromuscul Dis ; 8(s2): S317-S324, 2021.
Article En | MEDLINE | ID: mdl-34334413

Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for microdystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies.


Dependovirus , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/therapy , Animals , Dystrophin , Genetic Vectors/therapeutic use , Humans , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Myoblasts/metabolism
11.
J Neuromuscul Dis ; 8(s2): S271-S281, 2021.
Article En | MEDLINE | ID: mdl-34275905

BACKGROUND: Duchenne muscular dystrophy is a degenerative muscle disease that results from impairment of the dystrophin gene. The disease causes progressive loss in muscle mass and function. OBJECTIVE: The anti-aging protein, α-klotho, has been implicated in the regulation of muscle regeneration. We previously discovered that mice harboring reduced α-klotho levels exhibited a decline in muscle strength and running endurance. METHOD: To investigate the ability of α-klotho to improve overall endurance in a dystrophin null murine model, we examined the voluntary wheel running performance of dystrophin-null, mdx4cv mice overexpressing an α-klotho transgene. RESULTS: As expected, compared to wild type, both male and female dystrophic mice exhibited reduced running ability that was characterized by shorter running duration and longer periods of rest between cycles of activity. While our results did not detect an improvement in running performance with α-klotho overexpression, we identified distinct differences in the running patterns between females and males from all mouse strains analyzed (i.e., mdx4cv, mdx4cv overexpressing α-klotho, α-klotho overexpressing, α-klotho hypomorph, and wild type). For all strains, male mice displayed significantly reduced voluntary running ability compared to females. Further analysis of the mdx4cv strains demonstrated that male mice ran for shorter lengths of time and took longer breaks. However, we did not identify gender-associated differences in the actual speed at which mdx4cv mice ran. CONCLUSION: Our data suggest key differences in the running capabilities of female and male mice, which are of particular relevance to studies of dystrophin-null mice.


Dystrophin/metabolism , Klotho Proteins/metabolism , Running , Animals , Female , Male , Mice , Mice, Inbred mdx , Motor Activity/physiology , Muscle Strength , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/physiopathology
13.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article En | MEDLINE | ID: mdl-34298968

Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.


Cardiomyopathies/genetics , Heart/physiopathology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Diseases/genetics , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Disease Models, Animal , Energy Metabolism , Humans , Mice , Mitochondria, Heart/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle, Skeletal/ultrastructure , Muscular Atrophy/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology , Phenotype
14.
Nat Commun ; 12(1): 2951, 2021 05 19.
Article En | MEDLINE | ID: mdl-34012031

The muscular dystrophies encompass a broad range of pathologies with varied clinical outcomes. In the case of patients carrying defects in fukutin-related protein (FKRP), these diverse pathologies arise from mutations within the same gene. This is surprising as FKRP is a glycosyltransferase, whose only identified function is to transfer ribitol-5-phosphate to α-dystroglycan (α-DG). Although this modification is critical for extracellular matrix attachment, α-DG's glycosylation status relates poorly to disease severity, suggesting the existence of unidentified FKRP targets. Here we reveal that FKRP directs sialylation of fibronectin, a process essential for collagen recruitment to the muscle basement membrane. Thus, our results reveal that FKRP simultaneously regulates the two major muscle-ECM linkages essential for fibre survival, and establishes a new disease axis for the muscular dystrophies.


Fibronectins/metabolism , Glycosyltransferases/metabolism , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Pentosyltransferases/metabolism , Zebrafish Proteins/metabolism , Animals , Basement Membrane/metabolism , Basement Membrane/pathology , Cell Line , Disease Models, Animal , Gene Knockout Techniques , Glycosylation , Glycosyltransferases/deficiency , Glycosyltransferases/genetics , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophy, Animal/genetics , Mutation , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Pentosyltransferases/deficiency , Pentosyltransferases/genetics , Phenotype , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
15.
Am J Physiol Cell Physiol ; 321(1): C94-C103, 2021 07 01.
Article En | MEDLINE | ID: mdl-33979211

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by cell cycle inhibitory proteins such as p16, p21, and p53. When cells enter senescence, they secrete a host of proinflammatory factors known as the senescence-associated secretory phenotype, which has deleterious effects on surrounding cells and tissues. Little is known of the role of senescence in Duchenne muscular dystrophy (DMD), the fatal X-linked neuromuscular disorder typified by chronic inflammation, extracellular matrix remodeling, and a progressive loss in muscle mass and function. Here, we demonstrate using C57-mdx (8-wk-old) and D2-mdx (4-wk-old and 8-wk-old) mice, two mouse models of DMD, that cells displaying canonical markers of senescence are found within the skeletal muscle. Eight-week-old D2-mdx mice, which display severe muscle pathology, had greater numbers of senescent cells associated with areas of inflammation, which were mostly Cdkn1a-positive macrophages, whereas in C57-mdx muscle, senescent populations were endothelial cells and macrophages localized to newly regenerated myofibers. Interestingly, this pattern was similar to cardiotoxin (CTX)-injured wild-type (WT) muscle, which experienced a transient senescent response. Dystrophic muscle demonstrated significant upregulations in senescence pathway genes [Cdkn1a (p21), Cdkn2a (p16INK4A), and Trp53 (p53)], which correlated with the quantity of senescence-associated ß-galactosidase (SA-ß-Gal)-positive cells. These results highlight an underexplored role for cellular senescence in murine dystrophic muscle.


Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Endothelial Cells/metabolism , Macrophages/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/genetics , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Disease Models, Animal , Dystrophin/deficiency , Dystrophin/genetics , Endothelial Cells/pathology , Gene Expression Regulation , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myofibrils/metabolism , Myofibrils/pathology , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
16.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article En | MEDLINE | ID: mdl-33627403

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Caenorhabditis elegans Proteins/genetics , Dystrophin/genetics , Hydrogen Sulfide/pharmacology , Mitochondria, Muscle/drug effects , Morpholines/pharmacology , Muscle, Skeletal/drug effects , Muscular Dystrophy, Animal/drug therapy , Organophosphorus Compounds/pharmacology , Organothiophosphorus Compounds/pharmacology , Thiones/pharmacology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dystrophin/deficiency , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Humans , Hydrogen Sulfide/metabolism , Locomotion/drug effects , Locomotion/genetics , Male , Mice , Mice, Inbred mdx , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Morpholines/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Organophosphorus Compounds/metabolism , Organothiophosphorus Compounds/metabolism , Prednisone/pharmacology , Sirtuins/genetics , Sirtuins/metabolism , Thiones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Utrophin/deficiency , Utrophin/genetics
17.
Am J Pathol ; 191(4): 730-747, 2021 04.
Article En | MEDLINE | ID: mdl-33497702

Duchenne muscular dystrophy (DMD) is a genetic, degenerative, striated muscle disease exacerbated by chronic inflammation. Mdx mice in the genotypic DMD model poorly represent immune-mediated pathology observed in patients. Improved understanding of innate immunity in dystrophic muscles is required to develop specific anti-inflammatory treatments. Here, inflammation in mdx mice and the more fibrotic utrn+/-;mdx Het model was comprehensively investigated. Unbiased analysis showed that mdx and Het mice contain increased levels of numerous chemokines and cytokines, with further increased in Het mice. Chemokine and chemokine receptor gene expression levels were dramatically increased in 4-week-old dystrophic quadriceps muscles, and to a lesser extent in diaphragm during the early injury phase, and had a small but consistent increase at 8 and 20 weeks. An optimized direct immune cell isolation method prevented loss of up to 90% of macrophages with density-dependent centrifugation previously used for mdx flow cytometry. Het quadriceps contain higher proportions of neutrophils and infiltrating monocytes than mdx, and higher percentages of F4/80Hi, but lower percentages of F4/80Lo cells and patrolling monocytes compared with Het diaphragms. These differences may restrict regenerative potential of dystrophic diaphragms, increasing pathologic severity. Fibrotic and inflammatory gene expression levels are higher in myeloid cells isolated from Het compared with mdx quadriceps, supporting Het mice may represent an improved model for testing therapeutic manipulation of inflammation in DMD.


Dystrophin/metabolism , Inflammation/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Animals , Inflammation/pathology , Macrophages/metabolism , Mice, Transgenic , Monocytes/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Respiratory Muscles/metabolism , Respiratory Muscles/pathology
18.
Mol Ther ; 29(3): 1086-1101, 2021 03 03.
Article En | MEDLINE | ID: mdl-33221436

Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by mutations in the DMD gene. Absence of dystrophin protein leads to progressive degradation of skeletal and cardiac function and leads to premature death. Over the years, zebrafish have been increasingly used for studying DMD and are a powerful tool for drug discovery and therapeutic development. In our study, a birefringence screening assay led to identification of phosphodiesterase 10A (PDE10A) inhibitors that reduced the manifestation of dystrophic muscle phenotype in dystrophin-deficient sapje-like zebrafish larvae. PDE10A has been validated as a therapeutic target by pde10a morpholino-mediated reduction in muscle pathology and improvement in locomotion, muscle, and vascular function as well as long-term survival in sapje-like larvae. PDE10A inhibition in zebrafish and DMD patient-derived myoblasts were also associated with reduction of PITPNA expression that has been previously identified as a protective genetic modifier in two exceptional dystrophin-deficient golden retriever muscular dystrophy (GRMD) dogs that escaped the dystrophic phenotype. The combination of a phenotypic assay and relevant functional assessments in the sapje-like zebrafish enhances the potential for the prospective discovery of DMD therapeutics. Indeed, our results suggest a new application for a PDE10A inhibitor as a potential DMD therapeutic to be investigated in a mouse model of DMD.


Dystrophin/metabolism , Muscular Dystrophy, Animal/prevention & control , Muscular Dystrophy, Duchenne/prevention & control , Myoblasts/drug effects , Phospholipid Transfer Proteins/antagonists & inhibitors , Phosphoric Diester Hydrolases/chemistry , Pyrazoles/pharmacology , Quinolines/pharmacology , Animals , Dogs , Dystrophin/genetics , Humans , Larva/drug effects , Larva/genetics , Larva/metabolism , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myoblasts/metabolism , Myoblasts/pathology , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Zebrafish
19.
Anat Rec (Hoboken) ; 304(6): 1305-1312, 2021 06.
Article En | MEDLINE | ID: mdl-33136305

In the present study we investigated the involvement of free fatty acid (FFA) receptors in the anti-inflammatory role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dystrophic muscles, by administering FFA blockers in the mdx mouse model of dystrophy. Mdx mice (3 months-old) were treated with fish oil capsules (FDC Vitamins; 0.4 g EPA and 0.2 g DHA; gavage) alone or concomitant to FFA1 and FFA4 blockers (GW1100 and AH7614; i.p.). C57BL/10 mice (3 months-old) and untreated-mdx mice received mineral oil and were used as controls. After 1 month of treatment, plasma markers of myonecrosis (total and cardiac creatine kinase; CK), the levels of FFA1 and FFA4 and of the markers of inflammation, nuclear transcription factor kappa B (NFkB), tumor necrosis factor alpha (TNF-α) and interleukin 1ß (IL-1ß) were analyzed in the diaphragm muscle and heart by western blot. Fish oil significantly reduced total CK, cardiac CK and the levels of NFkB (diaphragm), and of TNF-α and IL-1ß (diaphragm and heart) in mdx. In the dystrophic diaphragm, FFA1 was increased compared to normal. Blockers of FFA1 and FFA4 significantly inhibited the effects of fish oil treatment in both dystrophic muscles. The anti-inflammatory effects of fish oil in dystrophic diaphragm muscle and heart were mediated through FFA1 and FFA4.


No presente estudo investigamos o envolvimento de receptores de ácidos graxos livres (FFA) no efeito anti-inflamatório dos ácidos eicosapentaenoico (EPA) e docosahexaenoico (DHA) em músculos distróficos, administrando bloqueadores de FFA no camundongo mdx, modelo de distrofia. Camundongos mdx (3 meses de idade) foram tratados com cápsulas de óleo de peixe (FDC Vitamins; 0.4 g EPA e 0.2 g DHA; gavagem) ou com cápsulas de óleo de peixe concomitante a bloqueadores de FFA1 e FFA4 (GW1100 e AH7614; i.p.). Camundongos C57BL/10 (3 meses de idade) e camundongos mdx não tratados receberam óleo mineral e serviram de controle. Após 1 mês de tratamento, marcadores plasmáticos de mionecrose (creatina quinase total e cardíaca; CK), os níveis de FFA1 e FFA4 e dos marcadores de inflamação fator de transcrição nuclear kappa B (NFkB, nuclear transcription factor kappa B), fator de necrose tumoral alpha (TNF-α, tumor necrosis factor alpha) e interleucina 1ß (IL-1ß) foram analisados no músculo diafragma e no coração através de western blot. O óleo de peixe reduziu de forma significativa a CK total, CK cardíaca e os níveis de NFkB (diafragma), TNF-α e IL-1ß (diafragma e coração) no mdx. No diafragma distrófico, FFA1 estava aumentado comparado ao normal. Os bloqueadores de FFA1 e FFA4 inibiram de forma significativa os efeitos do tratamento com óleo de peixe em ambos músculos distróficos. Os efeitos anti-inflamatórios do óleo de peixe nos músculos distróficos diafragma e cardíaco foram mediados por FFA1 e FFA4.


Creatine Kinase/blood , Diaphragm/metabolism , Fish Oils/pharmacology , Interleukin-1beta/metabolism , Muscular Dystrophy, Animal/metabolism , Myocardium/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Biomarkers/metabolism , Mice, Inbred mdx
20.
Aging (Albany NY) ; 12(24): 24853-24871, 2020 12 23.
Article En | MEDLINE | ID: mdl-33361519

Duchenne Muscular Dystrophy (DMD) patients often suffer from both muscle wasting and osteoporosis. Our previous studies have revealed reduced regeneration potential in skeletal muscle and bone, concomitant with ectopic calcification of soft tissues in double knockout (dKO, dystrophin-/-; utrophin-/-) mice, a severe murine model for DMD. We found significant involvement of RhoA/ROCK (Rho-Associated Protein Kinase) signaling in mediating ectopic calcification of muscles in dKO mice. However, the cellular identity of these RhoA+ cells, and the role that RhoA plays in the chronic inflammation-associated pathologies has not been elucidated. Here, we report that CD68+ macrophages are highly prevalent at the sites of ectopic calcification of dKO mice, and that these macrophages highly express RhoA. Macrophages from dKO mice feature a shift towards a more pro-inflammatory M1 polarization and an increased expression of various senescence-associated secretory phenotype (SASP) factors that was reduced with the RhoA/ROCK inhibitor Y-27632. Further, systemic inhibition of RhoA activity in dKO mice led to reduced number of RhoA+/CD68+ cells, as well as a reduction in fibrosis and ectopic calcification. Together, these data revealed that RhoA signaling may be a key regulator of imbalanced mineralization in the dystrophic musculoskeletal system and consequently a therapeutic target for the treatment of DMD or other related muscle dystrophies.


Calcinosis/metabolism , Macrophages/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Myocardium/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Calcinosis/immunology , Calcinosis/pathology , Cellular Senescence/genetics , Cellular Senescence/immunology , Disease Models, Animal , Dystrophin/genetics , Macrophages/immunology , Mice , Mice, Knockout , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/immunology , Myocardium/pathology , Utrophin/genetics , rho-Associated Kinases/immunology , rhoA GTP-Binding Protein/immunology
...